JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium.

Lab on a Chip 2005 October
This paper describes a platform for real-time sensing of dissolved oxygen in a flowing microfluidic environment using an oxygen-sensitive luminescent dye (platinum octaethylporphyrin ketone) integrated into a micro-oxygenator device. Using a phase-based detection method, the luminescent decay lifetime of the dye was consistent with the linear Stern-Volmer relationship using both gaseous and aqueous samples. Maximum sensor resolution varied between 120-780 ppb across a range of dissolved oxygen (DO) concentrations ranging from 0-42.5 ppm. The sensor was subsequently used to determine the convective mass-transfer characteristics of a multi-layer polydimethylsiloxane (PDMS) microfluidic oxygenator. The membrane-based oxygenator showed excellent agreement with an analytical convection model, and the integrated oxygen sensor was accurate across a wide range of tested flow rates (0.05-5 mL min(-1)). The device is unique for its ease of fabrication and highly flexible configuration, as well as the novel incorporation of oxygen delivery and detection in a single micro-device. Potential applications include tissue engineering, cell culturing, and miniaturized bio-assays that require the delivery and/or detection of precise quantities of oxygen within a microfluidic construct.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app