JOURNAL ARTICLE

Inhibition of inducible nitric-oxide synthase expression by (5R)-5-hydroxytriptolide in interferon-gamma- and bacterial lipopolysaccharide-stimulated macrophages

Ru Zhou, Shen-Xi Zheng, Wei Tang, Pei-Lan He, Xiao-Yu Li, Yi-Fu Yang, Yuan-Chao Li, Jian-Guo Geng, Jian-Ping Zuo
Journal of Pharmacology and Experimental Therapeutics 2006, 316 (1): 121-8
16166270
(5R)-5-Hydroxytriptolide (LLDT-8) is a novel analog of triptolide that has antiarthritic, hepatoprotective, and antiallogenic transplantation-rejective effects. In the present study, we report that LLDT-8 inhibited nitric oxide (NO) production and inducible nitric-oxide synthase (iNOS) expression in macrophages. LLDT-8 significantly attenuated NO production, in a dose-dependent manner, in primary peritoneal macrophages and a macrophage cell line of Raw 264.7 cells following stimulation with interferon (IFN)-gamma, lipopolysaccharide (LPS), and IFN-gamma plus LPS. It also reduced the production of tumor necrosis factor-alpha from LPS-stimulated Raw 264.7 cells. To further elucidate the mechanism responsible for the inhibition of NO, we examined the effect of LLDT-8 on IFN-gamma and LPS-induced iNOS expression. Indeed, LLDT-8 prevented NO generation by inhibiting iNOS expression at mRNA level and protein level, rather than by interfering its enzymatic activity. In IFN-gamma-stimulated Raw 264.7 cells, LLDT-8 suppressed the gene transcription of signal transducer and activator of transcription 1alpha and interferon regulatory factor (IRF)-1, but it displayed no apparent effect on IFN-gamma receptor level on cell surface. After LPS challenge, LLDT-8 further abrogated the expression of LPS receptor complex, including CD14, Toll-like receptor 4, and myeloid differentiation protein-2; decreased the LPS-induced phosphorylation of stress-activated protein kinase/c-Jun NH(2)-terminal kinase, extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase (MAPK); retarded the degradation of IkappaBalpha; and ameliorated the DNA binding activity of nuclear factor-kappaB (NF-kappaB) to nuclear proteins that accounts for transcriptional regulation of iNOS. Taken together, these results suggest that LLDT-8 reduces NO production and iNOS expression by inhibiting IFN-gamma-triggered IRF-1 expression and LPS-triggered MAPK phosphorylation and NF-kappaB activation.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16166270
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"