Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Application of Box-Wilson experimental design method for the photodegradation of bakery's yeast industry with UV/H2O2 and UV/H2O2/Fe(II) process.

Decolorization and mineralization of bakery's yeast industry effluent by photochemical advanced oxidation processes (AOPs) utilizing UV with hydrogen peroxide and Photo-Fenton, were investigated in a laboratory scale photo-reactor equipped with a 16 W low-pressure mercury vapor lamp. The Box-Wilson experimental design method was employed to evaluate the effects of major process variables (e.g. pH, oxidant dose, and irradiation time) on the decolorization efficiency. Response function coefficients were determined by regression analysis of the experimental data and prediction results agreed with the experimental results. The optimum hydrogen peroxide concentration and irradiation time were found to be 5 mM and 50 min at pH 3, respectively, for UV/H2O2 process. In the Photo-Fenton process application, maximum decolorization efficiency (96.4%) was obtained at the optimum reaction conditions that were 100 mM H2O2 and 1 mM Fe(II) doses at pH 3, and 10 min of irradiation time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app