COMPARATIVE STUDY
JOURNAL ARTICLE

Stress reduces the neuroprotective effect of exercise in a rat model for Parkinson's disease

Fleur M Howells, Vivienne A Russell, Musa V Mabandla, Lauriston A Kellaway
Behavioural Brain Research 2005 December 7, 165 (2): 210-20
16159673
Parkinson's disease (PD) is a progressive neurodegenerative disease of nigrostriatal dopamine (DA) neurons that project from the substantia nigra pars compacta (SNc) to the striatum. To further understand PD, researchers have developed standardized animal models of PD. In this study, Long Evans (LE) rats were unilaterally lesioned by injection of the neurotoxin, 6-hydroxydopamine (6-OHDA), into the medial forebrain bundle (MFB) of the left hemisphere. The rats were divided into three groups randomly; group 1 (runners) were housed in individual cages with attached running wheels, group 2 (stressed-runners) had access to individual free running wheels, except post-lesion when the rats were subjected to immobilization of the running wheel for 1 h per day for 14 days, as well as one session of 24-h food deprivation and a 7-h shift in the light/dark cycle. Group 3 (non-runnners) were housed individually in cages with attached running wheels that were permanently immobilized. Subcutaneous injection of the DA agonist, apomorphine, caused stressed-runners and non-runners to rotate vigorously away from the side of the lesion (contralaterally). Apomorphine-induced rotations provide a behavioural measure of the extent of the lesion, a depletion of more than 80% of DA neurons is required to produce vigorous contralateral rotations in response to apomorphine injection. Runners rotated significantly less than non-runners and stressed-runners. The number of rotations performed by stressed-runners was not significantly different from non-runners, suggesting that stress had cancelled the neuroprotective effect of running. Immunohistochemical staining for tyrosine hydroxylase in the SNc revealed slightly less destruction of DA neurons in the runners than in stressed-runners or non-runners, although these differences did not achieve statistical significance. The behavioural results confirm a previous finding suggesting that voluntary exercise is neuroprotective. A novel finding is that mild stressors cancel the neuroprotection afforded by voluntary exercise.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16159673
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"