CLINICAL TRIAL
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients.

Neurology 2005 September 14
BACKGROUND: Xenografts from patients with Charcot-Marie-Tooth type 1A (CMT1A) have shown delayed myelination and impaired regeneration of nude mice axons passing through the grafted segments. Neurotrophin-3 (NT-3), an important component of the Schwann cell (SC) autocrine survival loop, could correct these deficiencies.

OBJECTIVE: To assess the efficacy of NT-3 treatment in preclinical studies using animal models of CMT1A and to conduct a double-blind, placebo-controlled, randomized, pilot clinical study to assess the efficacy of subcutaneously administered NT-3 in patients with CMT1A.

METHODS: Nude mice harboring CMT1A xenografts and Trembler(J) mice with a peripheral myelin protein 22-point mutation were treated with NT-3, and the myelinated fiber (MF) and SC numbers were quantitated. Eight patients received either placebo (n = 4) or 150 microg/kg NT-3 (n = 4) three times a week for 6 months. MF regeneration in sural nerve biopsies before and after treatment served as the primary outcome measure. Additional endpoint measures included the Mayo Clinic Neuropathy Impairment Score (NIS), electrophysiologic measurements, quantitative muscle testing, and pegboard performance.

RESULTS: The NT-3 treatment augmented axonal regeneration in both animal models. For CMT1A patients, changes in the NT-3 group were different from those observed in the placebo group for the mean number of small MFs within regeneration units (p = 0.0001), solitary MFs, (p = 0.0002), and NIS (p = 0.0041). Significant improvements in these variables were detected in the NT-3 group but not in the placebo group. Pegboard performance was significantly worsened in the placebo group. NT-3 was well tolerated.

CONCLUSION: Neurotrophin-3 augments nerve regeneration in animal models for CMT1A and may benefit patients clinically, but these results need further confirmation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app