Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of the catalytic activity of hypoxia-inducible factor-1alpha-prolyl-hydroxylase 2 by a MYND-type zinc finger.

Hypoxia-induced gene expression is initiated when the hypoxia-inducible factor-1 (HIF-1) alpha subunit is stabilized in response to a lack of oxygen. An HIF-1alpha-specific prolyl-hydroxylase (PHD) catalyzes hydroxylation of the proline-564 and/or -402 residues of HIF-1alpha by an oxygen molecule. The hydroxyproline then interacts with the ubiquitin E3 ligase von Hippel Lindau protein and is degraded by an ubiquitin-dependent proteasome. PHD2 is the most active of three PHD isoforms in hydroxylating HIF-1alpha. Structural analysis showed that the N-terminal region of PHD2 contains a Myeloid translocation protein 8, Nervy, and DEAF1 (MYND)-type zinc finger domain, whereas the catalytic domain is located in its C-terminal region. We found that deletion of the MYND domain increased the activity of both recombinant PHD2 protein and in vitro-translated PHD2. The zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine augmented the activity of wild-type PHD2-F but not that of PHD2 lacking the MYND domain, confirming that the zinc finger domain is inhibitory. Overexpression of PHD2 lacking the MYND domain caused a greater reduction in the stability and function of HIF-1alpha than did overexpression of wild-type PHD2, indicating that the MYND domain also inhibits the catalytic activity of PHD2 in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app