Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression of a recombinant vector of a mutant human telomerase reverse transcriptase gene in human bladder cancer cell line T24, and its clinical significance.

BJU International 2005 October
OBJECTIVE: To construct a mutant enhanced green fluorescence protein (pEGFP) human telomerase reverse transcriptase (hTERT) gene expression vector (pEGFP-hTERT), to observe its expression in transfected human bladder cancer cell line T24 and its role in the molecular regulatory mechanisms of telomerase, and to provide a new target gene for bladder cancer therapy.

MATERIALS AND METHODS: Polymerase chain reaction (PCR) amplification was performed using primers based on the gene sequence of hTERT. The PCR product was cloned into plasmid pGEMT-T Easy and the sequence of mutant hTERT gene analysed. A recombinant mutant hTERT vector (pEGFP-hTERT) was constructed at the EcoR I and Sal I sites of the pEGFP-C1 vector. After transfecting the fusion gene into T24 cells by the method of calcium phosphate-DNA co-precipitation, we detected steady expression of the GFP-hTERT fusion protein by fluorescent-light microscopy. Changes in the proliferation of T24 cells were detected by light microscopy, and beta-galactosidase staining correlated with senescence.

RESULTS: Identification of pEGFP-hTERT by enzyme digestion showed that the mutant hTERT fragment had been cloned into EcoR I and Sal I sites of the pEGFP-C1 vector. Steady expression of GFP-hTERT fusion protein was located in the nucleus of transfected cells. Positive expression senescence-associated beta-galactosidase staining in transfected cells increased gradually with extended cultured time, and their growth was suppressed.

CONCLUSION: The recombinant mutant vector (pEGFP-hTERT) was successfully constructed and expressed steadily in T24 cells. The mutant-type hTERT gene suppresses the proliferation of T24 cells by a competitive effect on telomerase activity. This suggests that the hTERT gene might be a suitable gene target for bladder cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app