JOURNAL ARTICLE

Ethyl pyruvate improves systemic and hepatosplanchnic hemodynamics and prevents lipid peroxidation in a porcine model of resuscitated hyperdynamic endotoxemia

Balázs Hauser, Jochen Kick, Pierre Asfar, Ulrich Ehrmann, Maura Albicini, Josef Vogt, Ulrich Wachter, Uwe Bernd Brückner, Mitchell P Fink, Peter Radermacher, Hendrik Bracht
Critical Care Medicine 2005, 33 (9): 2034-42
16148477

OBJECTIVE: To investigate the systemic, pulmonary, and hepatosplanchnic hemodynamic and metabolic effects of delayed treatment with ethyl pyruvate in a long-term porcine model of hyperdynamic endotoxemia.

DESIGN: Prospective, randomized, controlled experimental study with repeated measures.

SETTING: Investigational animal laboratory.

SUBJECTS: Anesthetized, mechanically ventilated, and instrumented pigs.

INTERVENTIONS: After 12 hrs of continuous infusion of lipopolysaccharide and hydroxyethyl starch to keep mean arterial pressure >60 mm Hg, swine randomly received placebo (Ringer's solution; control group, n = 11) or ethyl pyruvate in lactated Ringer's solution (n = 8; 0.03 g.kg(-1) loading dose over 10 mins, thereafter 0.03 g.kg(-1)hr(-1) for 12 hrs).

MEASUREMENTS AND MAIN RESULTS: Whereas mean arterial pressure significantly decreased in control animals, mean arterial pressure was maintained at the baseline level in pigs treated with ethyl pyruvate. Global oxygen uptake was comparable, so that the trend toward a higher oxygen transport and the significantly higher mixed venous hemoglobin oxygen saturation resulted in a significantly lower oxygen extraction in the ethyl pyruvate group. Ethyl pyruvate reduced intrapulmonary venous admixture and resulted in significantly greater Pa(O2)/F(IO2) ratios. Despite comparable urine production in the two groups during the first 18 hrs of endotoxemia, ethyl pyruvate significantly increased diuresis during the last 6 hrs of the study. Lipopolysaccharide-induced systemic and regional venous metabolic acidosis was significantly ameliorated by ethyl pyruvate. Endotoxemia increased both blood nitrate + nitrite and isoprostane concentrations, and ethyl pyruvate attenuated the response of these markers of nitric oxide production and lipid peroxidation.

CONCLUSIONS: Ethyl pyruvate infusion resulted in improved hemodynamic stability and ameliorated acid-base derangements induced by chronic endotoxemia in pigs. Reduced oxidative stress and an decreased nitric oxide release probably contributed to these effects.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
16148477
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"