JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Newton's constant and the twenty-first century laboratory.

The main aim of this paper is to describe the problems that confront experimentalists who attempt to determine Newton's constant of gravitation, G. I will motivate this work by discussing the role of Newton's constant of gravitation in classical physics and recent ideas as to its role in quantum physics. I will then discuss some key aspects of a precision determination of G. This will include criteria for the selection of the detector of the gravitational torque from the point of view of random uncertainties due to read-out noise, thermal and vibrational noise. Another important factor in precise determinations of G is the control of systematic effects (type B uncertainties) such as those due to uncertainties in absolute calibration of the gravitational torque, density homogeneity of source masses and length metrology. I will illustrate the discussion using the determination of G currently underway at the International Bureau of Weights and Measures in France, and describe other experimental configurations that have been used in the past or are being currently developed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app