Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Review
Add like
Add dislike
Add to saved papers

Role of muscle in regulating extracellular [K+].

Seminars in Nephrology 2005 September
There is a positive association between diets rich in potassium, control of blood pressure, and prevention of stroke. Extracellular [K+] is regulated closely to maintain normal membrane excitability by the concerted regulatory responses of muscle and kidney. Although kidney is responsible for ultimately matching K+ output to K+ intake each day, muscle contains more than 90% of the body's K+ and can buffer changes in extracellular fluid [K+] by either acutely taking up extracellular fluid K+ or releasing intracellular fluid K+ from muscle. It long has been assumed that the changes in muscle K+ transport are a function of sodium pump (Na,K-adenosine triphosphatase [Na, K-ATPasel]) abundance, especially that of the alpha2 isoform, which predominates in skeletal muscle. To test the physiologic significance of changes in muscle Na,K-ATPase expression, we developed the K+ clamp, which measures insulin-stimulated cellular K+ uptake in vivo in the conscious rat. By using the K+ clamp we discovered that significant insulin resistance to cell K+ uptake occurs as follows: (1) early in K+ deprivation before a decrease in muscle sodium pump pool size, and (2) during glucocorticoid treatment, which increases muscle Na,K-ATPase alpha2 levels greater than 50%. We also discovered that adaptation of renal and extrarenal K+ handling to altered K+ balance often occurs without changes in plasma [K+], supporting a feedforward mechanism involving K+ sensing in the splanchnic bed and adjustment of K+ handling. These findings establish the advantage of combining molecular analyses of Na,K-ATPase expression and activity with systems analyses of cellular K+ uptake and excretion in vivo to reveal regulatory mechanisms operating to control K+ homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app