Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antagonic effects of oestradiol in interaction with IGF-1 on proliferation of lactotroph cells in vitro.

The effects of IGF-1, 17 beta oestradiol and its functional interaction on lactotrophs cell proliferation were evaluated. In addition we investigated the involvement of PKC alpha, epsilon and phosphorilated ERK, in the mitogenic process. Primary cell cultures of adenohypophysis from female Wistar rats were studied in serum free conditions. The proliferation of lactotrophs was determined by double immunostaining for BrdU and PRL. The incubation with IGF-1 5, 30 or 100 ng/ml during 48 or 72 h increased lactotrophs proliferation two-threefold depending on IGF-1 concentration. Co-incubation of IGF-1 (30 ng/ml) with genistein (25 microM) or BIM (0.5 or 2 microM), lowered of tyrosine kinase receptor or of PKC respectively, inhibited the induced IGF-1 lactotrophs proliferation. 17 beta oestradiol (1, 10 or 100 nM) had not mitogenic effect, whereas in the presence of serum PRL cells proliferation was stimulated. Co-incubation with 1 nM oestradiol and IGF-1 significantly decreased the lactotroph BrdU-labelling achieved with IGF-1. PKC alpha, epsilon and ERK1/2 levels measured by western blot augmented in the presence of IGF-1 and were inhibited with the addition of genistein, supporting a participation of these enzymes in the proliferate process. Co-incubation of IGF-1 with 1 nM oestradiol decreased both PKC isoforms and activated ERK1/2 levels, suggesting that oestradiol would exert its antiproliferative effect by acting on the signalling pathway of IGF-1. The results revealed antagonic effects of oestradiol on lactotroph proliferation depending on its concentration and the presence of IGF-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app