Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lung squamous cell carcinoma and adenocarcinoma cell lines use different mediators to induce comparable phenotypic and functional changes in human monocyte-derived dendritic cells.

Tumor-derived immunosuppressive factors contribute to the evasion of malignant cells from the immune response, partially by hampering dendritic cell (DC) differentiation. Here, we analyze whether soluble mediators released by the most frequent histological types of non-small cell lung carcinoma, squamous cell carcinoma (SCC), and adenocarcinoma (AD) cells, affect the development and functionality of DC. Monocytes from healthy donors were differentiated in vitro into DC with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4, in the absence or presence of soluble factors (SF) from SCC or AD cell lines. Monocytes were differentiated in parallel into macrophages (MPhi s) with macrophage colony-stimulating factor (M-CSF). SF-treated DC were phenotypically and functionally more similar to MPhi s than to untreated DC [control DC (Ctrl-DC)]. Both tumors increased myelomonocytic markers (CD14, CD16, CD32, and CD163) and impaired CD1a expression on DC. SF-treated DC increased their endocytic capacity, and released higher levels of IL-6, IL-10, and lower levels of IL-12, compared to Ctrl-DC. SF-treated DC were poor stimulators in mixed lymphocyte reactions, and naïve CD4(+) T lymphocytes stimulated by SF-treated DC secreted lower levels of interferon (IFN)-gamma and higher amounts of IL-10 than controls. In contrast to AD, the effects caused by SCC were mostly abolished by IL-6 neutralization during monocyte differentiation. However, tumor-derived prostanoid blockade recovered the IFN-gamma levels secreted by lymphocytes stimulated with SF-treated DC, whereas prostanoid/IL-6 or prostanoid/IL-10 blockade decreased IL-10 production only by SCC-DC-stimulated lymphocytes. Thus, we provide evidence that lung SCC and AD cause comparable deficiencies on DC in vitro, skewing monocyte differentiation from DC to MPhi -like cells, but most of these changes occurred via different mediators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app