A TSK-type neurofuzzy network approach to system modeling problems

Chen-Sen Ouyang, Wan-Jui Lee, Shie-Jue Lee
IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics 2005, 35 (4): 751-67
We develop a neurofuzzy network technique to extract TSK-type fuzzy rules from a given set of input-output data for system modeling problems. Fuzzy clusters are generated incrementally from the training dataset, and similar clusters are merged dynamically together through input-similarity, output-similarity, and output-variance tests. The associated membership functions are defined with statistical means and deviations. Each cluster corresponds to a fuzzy IF-THEN rule, and the obtained rules can be further refined by a fuzzy neural network with a hybrid learning algorithm which combines a recursive singular value decomposition-based least squares estimator and the gradient descent method. The proposed technique has several advantages. The information about input and output data subspaces is considered simultaneously for cluster generation and merging. Membership functions match closely with and describe properly the real distribution of the training data points. Redundant clusters are combined, and the sensitivity to the input order of training data is reduced. Besides, generation of the whole set of clusters from the scratch can be avoided when new training data are considered.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"