JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Photodynamic therapy on keloid fibroblasts in tissue-engineered keratinocyte-fibroblast co-culture.
Lasers in Surgery and Medicine 2005 September
BACKGROUND AND OBJECTIVES: Keloids are disfiguring, proliferative scars that are a pathologic response to cutaneous injury. An organotypic tissue culture system (the Raft model 1-10) was used to investigate the feasibility of using photodynamic therapy (PDT) as an adjunctive therapy to treat keloids following surgical excision. The Raft co-culture system mimics skin by layering keratinocytes on top of fibroblasts embedded in a collagen matrix. PDT uses drugs that produce singlet oxygen in situ when irradiated by light, and may lead to a number of effects in living tissues varying from the modulation of growth to apoptosis. PDT is already used to treat several benign and malignant diseases in organs such as the skin, retina, and esophagus.
STUDY DESIGN/MATERIALS AND METHODS: Normal adult, neonatal, and keloid fibroblasts and keratinocytes were isolated from skin obtained from patients undergoing elective procedures and used to construct the Rafts. Mature Rafts (after 4 days) were incubated with 5-amino levulinic acid (5-ALA), a photosensitizer, for 3 hours and were laser-irradiated (635 nm) for total energy delivery of 5 J/cm2, 10 J/cm2, or 20 J/cm2. Rafts were examined 24 hours and 14 days later. Cell viability was determined using confocal imaging combined with live-dead fluorescent dyes. Multi-photon microscope (MPM) imaged collagen structure and density. As Rafts contract over time, surface area was measured using optical micrometry daily.
RESULTS: At 10 and 20 J/cm2, near-total cell death was observed in all constructs, while at 5 J/cm2 cell viability was comparable to controls. Cell viability in keloid and neonatal Rafts was greater than that observed in normal adult Rafts. Treated Rafts contracted less over the 14-day period compared to controls. Contraction and collagen density were greatest in keloid and neonatal Rafts.
CONCLUSIONS: A PDT dosimetry range was established, which reduces tissue contraction and collagen density while minimizing injury to fibroblasts.
STUDY DESIGN/MATERIALS AND METHODS: Normal adult, neonatal, and keloid fibroblasts and keratinocytes were isolated from skin obtained from patients undergoing elective procedures and used to construct the Rafts. Mature Rafts (after 4 days) were incubated with 5-amino levulinic acid (5-ALA), a photosensitizer, for 3 hours and were laser-irradiated (635 nm) for total energy delivery of 5 J/cm2, 10 J/cm2, or 20 J/cm2. Rafts were examined 24 hours and 14 days later. Cell viability was determined using confocal imaging combined with live-dead fluorescent dyes. Multi-photon microscope (MPM) imaged collagen structure and density. As Rafts contract over time, surface area was measured using optical micrometry daily.
RESULTS: At 10 and 20 J/cm2, near-total cell death was observed in all constructs, while at 5 J/cm2 cell viability was comparable to controls. Cell viability in keloid and neonatal Rafts was greater than that observed in normal adult Rafts. Treated Rafts contracted less over the 14-day period compared to controls. Contraction and collagen density were greatest in keloid and neonatal Rafts.
CONCLUSIONS: A PDT dosimetry range was established, which reduces tissue contraction and collagen density while minimizing injury to fibroblasts.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app