Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know?

Endocrine Reviews 2005 December
The cross-regulation of Wnt/beta-catenin/Tcf ligands, kinases, and transcription factors with members of the nuclear receptor (NR) family has emerged as a clinically and developmentally important area of endocrine cell biology. Interactions between these signaling pathways result in a diverse array of cellular effects including altered cellular adhesion, tissue morphogenesis, and oncogenesis. Analyses of NR interactions with canonical Wnt signaling reveal two broad themes: Wnt/beta-catenin modulation of NRs (theme I), and ligand-dependent NR inhibition of the Wnt/beta-catenin/Tcf cascade (theme II). Beta-catenin, a promiscuous Wnt signaling member, has been studied intensively in relation to the androgen receptor (AR). Beta-catenin acts as a coactivator of AR transcription and is also involved in co-trafficking, increasing cell proliferation, and prostate pathogenesis. T cell factor, a transcriptional mediator of beta-catenin and AR, engages in a dynamic reciprocity of nuclear beta-catenin, p300/CREB binding protein, and transcriptional initiation factor 2/GC receptor-interaction protein, thereby facilitating hormone-dependent coactivation and transrepression. Beta-catenin responds in an equally dynamic manner with other NRs, including the retinoic acid (RA) receptor (RAR), vitamin D receptor (VDR), glucocorticoid receptor (GR), progesterone receptor, thyroid receptor (TR), estrogen receptor (ER), and peroxisome proliferator-activated receptor (PPAR). The NR ligands, vitamin D(3), trans/cis RA, glucocorticoids, and thiazolidines, induce dramatic changes in the physiology of cells harboring high Wnt/beta-catenin/Tcf activity. Wnt signaling regulates, directly or indirectly, developmental processes such as ductal branching and adipogenesis, two processes dependent on NR function. Beta-catenin has been intensively studied in colorectal cancer; however, it is now evident that beta-catenin may be important in cancers of the breast, prostate, and thyroid. This review will focus on the cross-regulation of AR and Wnt/beta-catenin/Tcf but will also consider the dynamic manner in which RAR/RXR, GR, TR, VDR, ER, and PPAR modulate canonical Wnt signaling. Although many commonalities exist by which NRs interact with the Wnt/beta-catenin signaling pathway, striking cell line and tissue-specific differences require deciphering and application to endocrine pathology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app