Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations

Mubeena Akhtar, M I Bhanger, Shahid Iqbal, S Moosa Hasany
Journal of Hazardous Materials 2006 January 16, 128 (1): 44-52
The sorption potential of chemically and thermally treated rice husk (RHT) for the removal of 2,4-dichlorophenol (DCP) from aqueous solutions has been investigated. Sorption of DCP by rice husk was observed over a wide pH range of 1-10. The effect of contact time between liquid and solid phases, sorbent dose, pH, concentration of sorbate and temperature on the sorption of DCP onto rice husk has been studied. The pore area and average pore diameter of RHT by BET method are calculated to be 17+/-0.6 m2g-1 and 51.3+/-1.5 nm, respectively. Maximum sorption (98+/-1.2%) was achieved for RHT from 6.1x10(-5) moldm(-3) of sorbate solution using 0.1g of rice husk for 10 min agitation time at pH 6 and 303K, which is comparable to activated carbon commercial (ACC) 96.6+/-1.2%, but significantly higher than chemically treated rice husk (RHCT) 65+/-1.6% and rice husk untreated (RHUT) 41+/-2.3%. The sorption data obtained at optimized conditions was subjected to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. Sorption intensity 1/n (0.31+/-0.01) and sorption capacity multilayer C(m) (12.0+/-1.6 mmolg(-1)) have been evaluated using Freundlich sorption isotherm, whereas the values of sorption capacity monolayer Q (0.96+/-0.03 mmolg(-1)) and binding energy, b, (4.5+/-1.0)x10(4)dm(3)mol(-1) have been estimated by Langmuir isotherm. The Langmuir constant, b, was also used to calculate the dimensionless factor, R(L), in the concentration range (0.6-6.1)x10(-4) moldm(-3), suggesting greater sorption at low concentration. D-R sorption isotherm was employed to calculate sorption capacity X(m) (2.5+/-0.07 mmolg(-1)) and sorption energy E (14.7+/-0.13 kJmol(-1)). Lagergren and Morris-Weber equations were employed to study kinetics of sorption process using 0.2g of RHT, 25 cm(3) of 0.61x10(-4)moldm(-3) sorbate concentration at pH 6, giving values of first-order rate constant, k, and rate constant of intraparticle transport, R(id), (0.48+/-0.04 min(-1) and 6.8+/-0.8 nmolg(-1)min(-1/2), respectively) at 0.61x10(-4)moldm(-3) solution concentration of DCP, 0.1g RHT, pH 6 and 2-10min of agitation time. For thermodynamic studies, sorption potential was examined over temperature range 283-323 K by employing 6.1x10(-4)moldm(-3) solution concentration of DCP, 0.1g RHT at pH 6 and 10 min of agitation time and values of DeltaH (-25+/-1 kJmol(-1)), DeltaS (-61+/-4 Jmol(-1)K(-1)) and DeltaG(303K) (-7.1+/-0.09 kJmol(-1)) were computed. The negative values of enthalpy, entropy, and free energy suggest that the sorption is exothermic, stable, and spontaneous in nature.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"