JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of the programmed Death-1 pathway in the suppressive activity of alternatively activated macrophages in experimental cysticercosis.

We characterised a population of macrophages potentially involved in the immunoregulation induced by experimental cysticercosis. Following Taenia crassiceps infection, macrophages recruited in the peritoneal cavity were isolated and co-cultured at different ratios with T cells from naïve mice previously stimulated with anti-CD3/CD28 antibodies; these macrophages inhibited naïve T cell proliferation. This suppressive effect was Interleukin (IL)-10, Interferon-gamma (IFN-gamma), and nitric oxide (NO) independent. In contrast, macrophage-T cell contact was necessary to maintain anergy of T cells. Reverse transcriptase-PCR analysis of these macrophages showed higher transcripts of IL-10, chitinases Fizz1 and Ym1, and arginase-1 compared with naïve macrophages; by contrast, IL-12p40, and inducible nitric oxide synthase (iNOS) transcripts were undetected, whereas C-C chemokine ligand 5 (CCL5) was unchanged. Analysis of the membrane molecules expressed on Taenia-induced macrophages showed an up-regulation of several markers, mainly programmed death ligand 1 (PD-L1) and PD-L2. Blockade of PD-L1, PD-L2 or their receptor PD-1, but not of another marker, eliminated their ability to inhibit T-cell proliferation. Parallel experiments using ovalbumin (OVA)-peptide as a model antigen displayed similar results. Additionally, the same mechanism appears to be functional in splenocytes of T. crassiceps-infected mice given that blockade of PD-1, PD-L1 or PD-L2 re-established their ability to proliferate in response to parasite antigens. Moreover, Taenia-induced macrophages were able to suppress a mixed lymphocyte reaction in a PD-1-dependent manner. Thus, cestode infections induce macrophages alternatively activated with strong suppressive activity involving the PD-1/PD-L's pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app