JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Orexinergic projections to the cat midbrain mediate alternation of emotional behavioural states from locomotion to cataplexy.

Journal of Physiology 2005 November 2
Orexinergic neurones in the perifornical lateral hypothalamus project to structures of the midbrain, including the substantia nigra and the mesopontine tegmentum. These areas contain the mesencephalic locomotor region (MLR), and the pedunculopontine and laterodorsal tegmental nuclei (PPN/LDT), which regulate atonia during rapid eye movement (REM) sleep. Deficiencies of the orexinergic system result in narcolepsy, suggesting that these projections are concerned with switching between locomotor movements and muscular atonia. The present study characterizes the role of these orexinergic projections to the midbrain. In decerebrate cats, injecting orexin-A (60 microm to 1.0 mm, 0.20-0.25 microl) into the MLR reduced the intensity of the electrical stimulation required to induce locomotion on a treadmill (4 cats) or even elicit locomotor movements without electrical stimulation (2 cats). On the other hand, when orexin was injected into either the PPN (8 cats) or the substantia nigra pars reticulata (SNr, 4 cats), an increased stimulus intensity at the PPN was required to induce muscle atonia. The effects of orexin on the PPN and the SNr were reversed by subsequently injecting bicuculline (5 mm, 0.20-0.25 microl), a GABA(A) receptor antagonist, into the PPN. These findings indicate that excitatory orexinergic drive could maintain a higher level of locomotor activity by increasing the excitability of neurones in the MLR, while enhancing GABAergic effects on presumably cholinergic PPN neurones, to suppress muscle atonia. We conclude that orexinergic projections from the hypothalamus to the midbrain play an important role in regulating motor behaviour and controlling postural muscle tone and locomotor movements when awake and during sleep. Furthermore, as the excitability is attenuated in the absence of orexin, signals to the midbrain may induce locomotor behaviour when the orexinergic system functions normally but elicit atonia or narcolepsy when the orexinergic function is disturbed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app