Removal of Cr(VI) from wastewater using rice bran

K K Singh, R Rastogi, S H Hasan
Journal of Colloid and Interface Science 2005 October 1, 290 (1): 61-8
The novel biosorbent rice bran has been successfully utilized for the removal of Cr(VI) from wastewater. The maximum removal of Cr(VI) was found to be 99.4% at pH 2.0, initial Cr(VI) concentration of 200 mg l(-1), and temperature 20 degrees C. The effect of different parameters such as contact time, adsorbate concentration, pH of the medium, and temperature was investigated. The adsorption kinetics was tested for first-order reversible, pseudo-first-order, and pseudo-second-order; reaction and the rate constants of kinetic models were calculated. Mass transfer of Cr(VI) from the bulk to the solid phase (rice bran) was studied at different temperatures. Different thermodynamic parameters, viz., changes in standard free energy, enthalpy, and entropy, have also been evaluated and it has been found that the reaction was spontaneous and endothermic in nature. The Langmuir and Freundlich equations for describing adsorption equilibrium were applied to data. The constants and correlation coefficients of these isotherm models were calculated and compared. Desorption studies was also carried out and found that complete desorption of Cr(VI) took place at pH of 9.5. The data were also subjected to multiple regression analysis and a model was developed to predict the removal of Cr(VI) from wastewater.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"