Analysis of sound propagation in a fluid through a screen of scatterers

Y C Angel, C Aristégui
Journal of the Acoustical Society of America 2005, 118 (1): 72-82
A multiple scattering analysis in a nonviscous fluid is developed in detail in order to predict the coherent sound motion in the presence of disordered heterogeneities, such as particles, fibers, bubbles, or contrast agents. Scatterers can be homogeneous, layered, shell-like with encapsulated liquids or gas, nonabsorbing, or absorbing, and can take a wide variety of shapes. A priori imposed limitations or physical assumptions are absent in the derivation, whether they concern the expected response of the fluid-scatterer mixture, the scatterer size relative to wavelength, or the scatterer concentration or the screen thickness. However, as in any multiple scattering formulation, a closure assumption is invoked. Closed-form results for the backscattered and forward-scattered wave motions on either side of the screen of scatterers are obtained. The fluid-scatterer mixture is shown to behave as an effective dissipative medium from the standpoint of the coherent motion. It is found that the effective medium is fully described once two parameters are determined: the effective wave number and the reflection coefficient for the associated half-space screen. Remarkably, both parameters depend only on the far-field scattering properties of a single scatterer.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"