Two-dimensional ultrasound receive array using an angle-tuned Fabry-Perot polymer film sensor for transducer field characterization and transmission ultrasound imaging

Paul Christopher Beard
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2005, 52 (6): 1002-12
A 2-D optical ultrasound receive array has been investigated. The transduction mechanism is based upon the detection of acoustically induced changes in the optical thickness of a thin polymer film acting as a Fabry-Perot sensing interferometer (FPI). By illuminating the sensor with a large-area laser beam and mechanically scanning a photodiode across the reflected output beam, while using a novel angle-tuned phase bias control system to optimally set the FPI working point, a notional 2-D ultrasound array was synthesized. To demonstrate the concept, 1-D and 2-D ultrasound field distributions produced by planar 3.5-MHz and focused 5-MHz PZT ultrasound transducers were mapped. The system was also evaluated by performing transmission ultrasound imaging of a spatially calibrated target. The "array" aperture, defined by the dimensions of the incident optical field, was elliptical, of dimensions 16 x 12 mm and spatially sampled in steps of 0.1 mm or 0.2 mm. Element sizes, defined by the photodiode aperture, of 0.8, 0.4, and 0.2 mm were variously used for these experiments. Two types of sensor were evaluated. One was a discrete 75-microm-thick polyethylene terephthalate FPI bonded to a polymer backing stub which had a wideband peak noise-equivalent pressure of 6.5 kPa and an acoustic bandwidth 12 MHz. The other was a 40-microm Parylene film FPI which was directly vacuum-deposited onto a glass backing stub and had an NEP of 8 kPa and an acoustic bandwidth of 17.5 MHz. It is considered that this approach offers an alternative to piezoelectric ultrasound arrays for transducer field characterization, transmission medical and industrial ultrasound imaging, biomedical photoacoustic imaging, and ultrasonic nondestructive testing.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"