COMPARATIVE STUDY
IN VITRO
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation.

Several human immunodeficiency virus (HIV) protease inhibitors, including atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, and saquinavir, were tested for their potential to inhibit uridine 5'-diphospho-glucuronosyltransferase (UGT) activity. Experiments were performed with human cDNA-expressed enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) as well as human liver microsomes. All of the protease inhibitors tested were inhibitors of UGT1A1, UGT1A3, and UGT1A4 with IC(50) values that ranged from 2 to 87 microM. The IC50 values found for all compounds for UGT1A6, 1A9, and 2B7 were >100 microM. The inhibition (IC50) of UGT1A1 was similar when tested against the human cDNA-expressed enzyme or human liver microsomes for atazanavir, indinavir, and saquinavir (2.4, 87, and 7.3 microM versus 2.5, 68, and 5.0 microM, respectively). By analysis of the double-reciprocal plots of bilirubin glucuronidation activities at different bilirubin concentrations in the presence of fixed concentrations of inhibitors, the UGT1A1 inhibition by atazanavir and indinavir was demonstrated to follow a linear mixed-type inhibition mechanism (Ki = 1.9 and 47.9 microM, respectively). These results suggest that a direct inhibition of UGT1A1-mediated bilirubin glucuronidation may provide a mechanism for the reversible hyperbilirubinemia associated with administration of atazanavir as well as indinavir. In vitro-in vivo scaling with [I]/Ki predicts that atazanavir and indinavir are more likely to induce hyperbilirubinemia than other HIV protease inhibitors studied when a free Cmax drug concentration was used. Our current study provides a unique example of in vitro-in vivo correlation for an endogenous UGT-mediated metabolic pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app