JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Engineered proteins containing the cohesin and dockerin domains from Clostridium thermocellum provides a reversible, high affinity interaction for biotechnology applications.

Journal of Biotechnology 2006 January 25
The cohesin-dockerin interaction, which is responsible for the formation of the cellulosome complex of cellulolytic bacteria, is a calcium-dependent, high affinity interaction. In this study, the cohesin (Cip7) and dockerin (Doc) domains of Clostridium thermocellum were fused to the cellulose-binding domain (CBD) of C. cellulovorans and the antibody-binding domain, protein LG, respectively, to form CBD-Cip7 and LG-Doc. Immobilised CBD-Cip7 was able to bind LG-Doc and subsequently antibody as determined using surface plasmon resonance. Binding was reversed by the removal of Ca2+ with EDTA. The dockerin containing fusion protein was affinity purified using an immobilised cohesin domain. Elution of the LG-Doc from the cohesin column was with EDTA. This affinity chromatography was repeated using an LG-dockerin column for the purification of cohesin fusion protein. The fusion proteins created in this report have shown that the properties of the cohesin and dockerin domains can be transferred to other protein domains and that the interaction between the cohesin and dockerin is specific, Ca2+ -dependent and reversible. We have shown that the cohesin-dockerin interaction has several properties making it suitable for use in recombinant fusion protein production and purification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app