Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

EGF stimulates proliferation of mouse embryonic stem cells: involvement of Ca2+ influx and p44/42 MAPKs.

We examined the effect of EGF on the proliferation of mouse embryonic stem (ES) cells and their related signal pathways. EGF increased [3H]thymidine and 5-bromo-2'-deoxyuridine incorporation in a time- and dose-dependent manner. EGF stimulated the phosphorylation of EGF receptor (EGFR). Inhibition of EGFR tyrosine kinase with AG-1478 or herbimycin A, inhibition of PLC with neomycin or U-73122, inhibition of PKC with bisindolylmaleimide I or staurosporine, and inhibition of L-type Ca2+ channels with nifedipine or methoxyverapamil prevented EGF-induced [3H]thymidine incorporation. PKC-alpha, -betaI, -gamma, -delta, and -zeta were translocated to the membrane and intracellular Ca2+ concentration ([Ca2+]i) was increased in response to EGF. Moreover, inhibition of EGFR tyrosine kinase, PLC, and PKC completely prevented EGF-induced increases in [Ca2+]i. EGF also increased inositol phosphate levels, which were blocked by EGFR tyrosine kinase inhibitors. Furthermore, EGF rapidly increased formation of H2O2, and pretreatment with antioxidant (N-acetyl-L-cysteine) inhibited EGF-induced increase of [Ca2+]i. In addition, we observed that p44/42 MAPK phosphorylation by EGF and inhibition of EGFR tyrosine kinase, PLC, PKC, or Ca2+ channels blocked EGF-induced phosphorylation of p44/42 MAPKs. Inhibition of p44/42 MAPKs with PD-98059 (MEK inhibitor) attenuated EGF-induced increase of [3H]thymidine incorporation. Finally, inhibition of EGFR tyrosine kinase, PKC, Ca2+ channels, or p44/42 MAPKs attenuated EGF-stimulated cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, and CDK4, respectively. In conclusion, EGF partially stimulates proliferation of mouse ES cells via PLC/PKC, Ca2+ influx, and p44/42 MAPK signal pathways through EGFR tyrosine kinase phosphorylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app