JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rituximab (chimeric anti-CD20) sensitizes B-NHL cell lines to Fas-induced apoptosis.

Oncogene 2005 December 9
Rituximab (chimeric anti-CD20 monoclonal antibodies) is currently being used in the treatment of B non-Hodgkin's lymphoma (NHL). We have recently reported that rituximab triggers and modifies various intracellular signaling pathways in NHL B-cell lines, resulting in reverting the chemoresistant phenotype to a sensitive phenotype. This study investigated whether rituximab also modifies intracellular signaling pathways resulting in the sensitization of NHL cells to Fas-induced apoptosis. Treatment of the Fas-resistant NHL cell lines (2F7, Ramos and Raji) with rituximab sensitized the cells to CH-11 (FasL agonist mAb)-induced apoptosis and synergy was achieved. Fas expression was upregulated by rituximab as early as 6 h post-treatment as determined by flow cytometry, reverse transcriptase-polymerase chain reaction and Western blot. Rituximab inhibited both the expression and activity of the transcription repressor Yin-Yang 1 (YY1) that negatively regulates Fas transcription. Inhibition of YY1 resulted in the upregulation of Fas expression and sensitization of the tumor cells to CH-11-induced apoptosis. The downregulation of YY1 expression was the result of rituximab-induced inhibition of both the p38 mitogen-activated protein kinase (MAPK) signaling pathway and constitutive nuclear factor kappa of B cells (NF-kappaB) activity. The involvement of NF-kappaB and YY1 in the regulation of Fas expression was corroborated by the use of Ramos cells with a dominant-active inhibitor of NF-kappaB (Ramos IkappaB-estrogen receptor (ER) mutant) and by silencing YY1 with YY1 siRNA, respectively. Further, the role of rituximab-mediated inhibition of the p38 MAPK/NF-kappaB/YY1 pathway in the regulation of Fas and sensitization to CH-11-induced apoptosis was validated by the use of specific chemical inhibitors of this pathway and which mimicked rituximab-mediated effects. These findings provide a novel mechanism of rituximab-mediated activity by sensitizing NHL cells to Fas-induced apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app