COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Amelioration of doxorubicin-induced myocardial oxidative stress and immunosuppression by grape seed proanthocyanidins in tumour-bearing mice.

We have investigated the protective effects of grape seed proanthocyanidins on doxorubicin-induced toxicity in tumour-bearing mice. The intraperitoneal administration of doxorubicin (2 mg kg(-1) every other day, cumulative dosage for 18 mg kg(-1)) significantly inhibited the growth of sarcoma 180, and induced myocardial oxidative stress with decreased superoxide dismutase and glutathione peroxidase activity while increasing malondialdehyde formation in the heart or serum. Doxorubicin-induced myocardial oxidative stress also reduced lactate dehydrogenase and creatine kinase activity in the heart and elevated their levels in the serum. Doxorubicin also affected immune functions of tumour-bearing mice with significantly decreased interleukin-2 (IL-2) and interferon-gamma (INF-gamma) production, and slightly decreased natural killer (NK) cell cytotoxicity, lymphocyte proliferation and CD4+/CD8+ ratio. It markedly increased the percentages of cytotoxic T cells (CD3+CD8+), helper T cells (CD3+CD4+), IL-2R+CD4+, and IL-2R+ cells as compared with untreated tumour-bearing mice. The intragastric administration of proanthocyanidin (200 mg kg(-1) daily) significantly inhibited tumour growth, and increased NK cell cytotoxicity, lymphocyte proliferation, CD4+/CD8+ ratio, IL-2 and INF-gamma production. Moreover, proanthocyanidin strongly enhanced the anti-tumour effect of doxorubicin and the above immune responses, and completely eliminated myocardial oxidative stress induced by doxorubicin. In conclusion, intragastric administration of proanthocyanidin could enhance the anti-tumour activity of doxorubicin and ameliorate doxorubicin-induced myocardial oxidative stress and immunosuppression in tumour-bearing mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app