Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Testosterone regulates androgen receptor immunoreactivity in the copulatory, but not courtship, neuromuscular system in adult male green anoles.

Androgens regulate the expression of male reproductive behaviour in diverse vertebrate species, often acting on androgen receptors (AR) to induce structural or functional changes in the nervous system and periphery. Male green anoles possess two sexually dimorphic neuromuscular systems, one controlling throat fan (dewlap) extension, which occurs during courtship, and the other mediating copulatory organ function. Although androgens are required for behavioural activation in both systems, testosterone has differential effects on the neuromuscular morphology. It increases the size of copulatory muscle fibres during the breeding season, but significant effects on dewlap muscle fibre size and motoneurone soma size in either system have not been detected. Corresponding to the lack of testosterone-induced morphological effects in the courtship system, relatively low levels of AR are expressed in the associated motoneurones. The present experiment had two goals, aiming to determine whether: (i) the other courtship and copulatory neuromuscular tissues express AR and (ii) testosterone and/or seasonal environmental changes regulate AR expression. The percentage of AR+ nuclei was evaluated in both the breeding and nonbreeding seasons in gonadally intact adult males (Experiment 1) and in castrated males treated with either testosterone or vehicle (Experiment 2). AR was extensively expressed in the dewlap and copulatory muscles, and in a high percentage of the copulatory motoneurones, but immunoreactivity did not vary across season. Testosterone increased the percentage of AR+ nuclei in the copulatory muscles of both breeding and nonbreeding males but not in the dewlap muscle or copulatory motoneurones. Finally, the target structures for both systems (cartilages and hemipenes) expressed AR in all animals. Therefore, the effects of testosterone on AR immunoreactivity suggest that up-regulation of the receptors may be important for morphological change. However, because all structures investigated in the present experiment expressed AR, the data also indicate that the receptors are involved with other functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app