CLINICAL TRIAL
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients.

UNLABELLED: (18)F-Galacto-RGD has been developed for PET of alpha(v)beta(3) integrin expression, a receptor involved in, for example, angiogenesis and metastasis. Our aim was to study the kinetics and biodistribution of (18)F-Galacto-RGD in cancer patients.

METHODS: Nineteen patients with metastases of malignant melanoma (n = 7), sarcomas (n = 10), or osseous metastases (n = 2) were examined. After injection of 133-200 MBq (18)F-Galacto-RGD, 3 consecutive emission scans from the pelvis to the thorax or dynamic emission scans of the tumor over 60 min, followed by 1 static emission scan of the body, were acquired. Time-activity curves and standardized uptake values (SUVs) were derived by image region-of-interest analysis with image-based arterial input functions. Compartmental modeling was used to derive the distribution volume for muscle tissue and tumors.

RESULTS: (18)F-Galacto-RGD showed rapid blood clearance and primarily renal excretion. SUVs in tumors ranged from 1.2 to 9.0. Tumor-to-blood and tumor-to-muscle ratios increased over time, with peak ratios of 3.1 +/- 2.0 and 7.7 +/- 4.3, respectively, at 72 min. The tumor kinetics were consistent with a 2-tissue compartment model with reversible specific binding. Distribution volume values were, on average, 4 times higher for tumor tissue (1.5 +/- 0.8) than those for muscle tissue (0.4 +/- 0.1). The data suggest that there was only minimal free and bound (specific or nonspecific) tracer in muscle tissue.

CONCLUSION: (18)F-Galacto-RGD demonstrates a highly favorable biodistribution in humans with specific receptor binding. Most important, this study shows that (18)F-Galacto-RGD allows visualization of alpha(v)beta(3) expression in tumors with high contrast. Consequently, this tracer offers a new strategy for noninvasive monitoring of molecular processes and may supply helpful information for planning and controlling of therapeutic approaches targeting the alpha(v)beta(3) integrin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app