JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Extracellular ATP opposes thrombin-induced myosin light chain phosphorylation and loss of barrier integrity in corneal endothelial cells.

Increased contractility of the actin cytoskeleton by phosphorylation of the regulatory myosin light chain (MLC) results in a loss of barrier integrity in corneal endothelial cells. This study has investigated the effect of extracellular ATP, which may influence both Ca2+ and cAMP signalling, on MLC phosphorylation and barrier integrity in cultured bovine corneal endothelial cells (BCEC) known to express A2B and P2Y purinergic receptors, and ecto-nucleotidases. Extracellular ATP (100 microM) promoted MLC dephosphorylation (pMLC=61.8% at 18 min; n=9). Pre-exposure to ARL-67156, an ecto-nucleotidase inhibitor, prevented ATP-induced dephosphorylation. Other P2Y agonists, UTP and ATPgammaS, also induced MLC dephosphorylation but to a lesser degree compared to ATP. Thrombin (2 U/ml), which activate Rho kinase through PAR-1 receptors in the endothelium, induced MLC phosphorylation (pMLC=129.2%; n=14). This phosphorylation was completely abolished by concomitant exposure to ATP. When cells were pretreated with adenosine (100 microM; A2B agonist) or forskolin (10 microM), thrombin-induced phosphorylation was suppressed. ATP also led to a significant increase in cAMP (> 3-fold compared to 10 microM adenosine). Thrombin-induced increase in trans-endothelial flux of horseradish peroxidase (44 kDa) and disruption of the cortical actin were suppressed by ATP. These findings indicate that in BCEC (1) ATP induces elevated cAMP through its metabolite adenosine leading to MLC dephosphorylation, (2) Stimulation of P2Y2 receptors also leads to activation of MLCP since UTP- and ATPgammaS caused MLC dephosphorylation, and (3) ATP is antagonistic to thrombin since the latter inhibits MLCP through increased activity of Rho kinase. These findings further emphasize the role of contractility of the actin cytoskeleton in regulating the barrier integrity of corneal endothelium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app