A Bayesian approach on sample size calculation for comparing means

Hansheng Wang, Shein-Chung Chow, Murphy Chen
Journal of Biopharmaceutical Statistics 2005, 15 (5): 799-807
In clinical research, parameters required for sample size calculation are usually unknown. A typical approach is to use estimates from some pilot studies as the true parameters in the calculation. This approach, however, does not take into consideration sampling error. Thus, the resulting sample size could be misleading if the sampling error is substantial. As an alternative, we suggest a Bayesian approach with noninformative prior to reflect the uncertainty of the parameters induced by the sampling error. Based on the informative prior and data from pilot samples, the Bayesian estimators based on appropriate loss functions can be obtained. Then, the traditional sample size calculation procedure can be carried out using the Bayesian estimates instead of the frequentist estimates. The results indicate that the sample size obtained using the Bayesian approach differs from the traditional sample size obtained by a constant inflation factor, which is purely determined by the size of the pilot study. An example is given for illustration purposes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"