JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Fibroblast growth factor 23 and its receptors.

Fibroblast growth factor 23 (FGF23) is a circulating factor that plays critical roles in phosphate and vitamin D metabolism, as evidenced by the fact that FGF23 missense mutations cause autosomal dominant hypophosphatemic rickets (ADHR). Autosomal dominant hypophosphatemic rickets is characterized by hypophosphatemia with inappropriately normal 1,25-dihydroxyvitamin D concentrations, as well as bone pain, fracture and rickets. This phenotype parallels that of patients with tumor induced osteomalacia (TIO), X-linked hypophosphatemic rickets (XLH), and fibrous dysplasia (FD), in whom elevated serum FGF23 levels are often observed. The fibroblast growth factor receptors (FGFR1-4) play key roles in skeletal development, as well as in normal metabolic processes. Several FGFR isoforms that potentially mediate the activity of FGF23 have been implicated. In the short term, these findings will lead to further understanding of FGF23 function, and potentially in the long term, to targeted therapies in disorders of hypo- and hyperphosphatemia that involve FGF23.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app