Isolation of TIR and non-TIR NBS—LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt)

Qiang Xu, Xiaopeng Wen, Xiuxin Deng
TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 2005, 111 (5): 819-30
Toll and interleukin-1 receptor (TIR) and non-TIR nucleotide binding site-leucine rich repeat (NBS-LRR) resistance gene analogues (RGAs) were obtained from chestnut rose (Rosa roxburghii Tratt) by two PCR-based amplification strategies (direct amplification and overlap extension amplification) with degenerate primers designed to the conserved P-loop, kinase-2, and Gly-Leu-Pro-Leu (GLPL) motifs within the NBS domain of plant resistance gene (R gene) products. Thirty-four of 65 cloned PCR fragments contained a continuous open reading frame (ORF) and their predicted protein products showed homology to the NBS-LRR class R proteins in the GenBank database. These 34 predicted protein sequences exhibited a wide range (19.5--99.4%) of sequence identity among them and were classified into two distinct groups by phylogenetic analysis. The first group consisted of 23 sequences and seemed to belong to the non-TIR NBS-LRR RGAs, since they contained group specific motifs (RNBS-A-non-TIR motif) that are often present in the coiled-coil domain of the non-TIR NBS-LRR class R genes. The second group comprised 11 sequences that contained motifs found in the TIR domain of TIR NBS-LRR class R genes. Restriction fragment length polymorphic (RFLP) markers were developed from some of the RGAs and used for mapping powdery mildew resistance genes in chestnut rose. Three markers, RGA 22 C, RGA 4 A, and RGA 7 B, were identified to be linked to a resistance gene locus, designated CRPM 1 for chestnut rose powdery mildew resistance 1, which accounted for 72% of the variation in powdery mildew resistance phenotype in an F1 segregating population. To our knowledge, this is the first report on isolation, phylogenetic analysis and potential utilization as genetic markers of RGAs in chestnut rose.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"