Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prevention of cancer cachexia by a novel nuclear factor {kappa}B inhibitor in prostate cancer.

PURPOSE: To investigate the association between serum interleukin-6 (IL-6) and cachexia in patients with prostate cancer and the inhibitory effect of a new nuclear factor kappaB (NF-kappaB) inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), on IL-6 production and cachexia in an animal model of hormone-refractory prostate cancer.

EXPERIMENTAL DESIGN: The association between serum IL-6 levels and variables of cachexia was evaluated in 98 patients with prostate cancer. The inhibitory effects of DHMEQ on IL-6 secretion and cachexia were investigated in in vitro and in vivo studies using JCA-1 cells derived from human prostate cancer.

RESULTS: Serum IL-6 levels were significantly elevated and cachexia developed in JCA-1 tumor-bearing mice as well as in prostate cancer patients with progressive disease. IL-6 secretion was significantly inhibited in JCA-1 cells exposed to DHMEQ. Intraperitoneal administration of DHMEQ (8 mg/kg) to tumor-bearing mice produced a significant amelioration of the reduction in body weight, epididymal fat weight, gastrocnemius muscle weight, hematocrit, and serum levels of triglyceride and albumin when compared with administration of DMSO or no treatment. DHMEQ caused a significant decrease of serum IL-6 level in JCA-1 tumor-bearing mice (all P < 0.05).

CONCLUSIONS: These results suggested an association between serum IL-6 and cachexia in patients with prostate cancer and in JCA-1 tumor-bearing mice and that a new NF-kappaB inhibitor, DHMEQ, could prevent the development of cachexia in JCA-1 tumor-bearing mice presumably through the inhibition of IL-6 secretion. DHMEQ seems to show promise as a novel and unique anticachectic agent in hormone-refractory prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app