Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of salmon GnRH and sex steroid hormones on expression of genes encoding growth hormone/prolactin/somatolactin family hormones and a pituitary-specific transcription factor in masu salmon pituitary cells in vitro.

Expression of genes encoding growth hormone (GH), prolactin (PRL), and somatolactin (SL) in growing and maturing salmon was stimulated by gonadotropin-releasing hormone (GnRH) analog during particular periods of the life cycle. GnRH therefore appears to directly and/or indirectly regulate gene expression for GH, PRL, and SL in combination with the pituitary-gonadal axis, such as sex steroid hormones. Direct effects of salmon GnRH (sGnRH), estradiol-17beta (E2), testosterone, and 11-ketotestosterone (11KT) on the amounts of GH, PRL, and SL mRNAs were thus examined using primary pituitary cell cultures of masu salmon at the four reproductive stages. We also determined the amounts of mRNA encoding pituitary specific POU homeodomain transcription factor (Pit-1) by real-time polymerase chain reactions. The amounts of GH, PRL, and SL mRNAs in the control cells elevated with gonadal maturation, coincidently with those of Pit-1 mRNA. sGnRH at 1.0 nM elevated the amounts of all mRNAs examined in the pre-spawning females, whereas significant effects were not observed with 100 nM sGnRH at any reproductive stages. Sex steroid hormones had no significant effects before initiation of gonadal maturation and at the maturing stage. In the males, E2 tended to decrease the amounts of SL mRNA in the pre-spawning stage. In the females, E2 and 11KT increased the amounts of PRL and SL mRNAs in the pre-spawning stage, but halved those of PRL mRNA in the spawning stage. The amounts of Pit-1 mRNA changed coincidently with those of PRL and SL mRNAs at all examined stages. The effects of E2 alone were abolished by 100 nM sGnRH. The present results indicated that both sGnRH and steroid hormones directly modulate synthesis of Pit-1, and further expression of PRL and SL genes. sGnRH may indirectly regulate GH/PRL/SL family hormone genes through the pituitary-gonadal axis, particularly in the late stage of gametogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app