BSP and RANKL induce osteoclastogenesis and bone resorption synergistically

Paloma Valverde, Qisheng Tu, Jake Chen
Journal of Bone and Mineral Research 2005, 20 (9): 1669-79

UNLABELLED: RANKL and BSP are upregulated in several bone resorptive disorders. However, the mechanisms by which these two factors might induce osteoclastogenesis and bone resorption synergistically under pathological conditions remain largely unknown.

INTRODUCTION: RANKL and bone sialoprotein II (BSP) have been shown to be upregulated in the serum of individuals with abnormally high osteoclastogenic and bone resorptive activities. Here we provide experimental evidence that RANKL and BSP induce osteoclastogenesis and bone resorption synergistically but mediate opposite effects in osteoclast survival and apoptosis.

MATERIALS AND METHODS: RAW264.7 cells and mouse bone marrow-derived monocytes/macrophages were treated with human recombinant BSP in the presence and absence of RANKL. TRACP stainings, bone resorption assays, Western blotting, immunoprecipitation analyses, and semiquantitative RT-PCR were used to evaluate the effects of BSP in osteoclast differentiation and bone resorption. Survival, DNA condensation, and caspase activity assays were used to determine the putative effects of BSP in osteoclast survival and apoptosis.

RESULTS AND CONCLUSIONS: RANKL induced osteoclast differentiation and bone resorption at a higher extent in the presence than in the absence of BSP in RAW264.7 cells and bone marrow-derived monocytes/macrophages. c-Src-dependent c-Cbl phosphorylation was 8-fold higher in RAW264.7 cells treated with BSP and RANKL than in those treated with RANKL alone. Furthermore, BSP and RANKL activated the master regulator of osteoclastogenesis nuclear factor of activated T cells (NFAT)-2 and increased the mRNA expression of other differentiation markers such as cathepsin K or TRACP. Inhibition of c-Src activity or chelating intracellular calcium inhibited the synergistic effects in bone resorption and the phosphorylation of the c-Src substrate c-Cbl. Inhibition of calcineurin or intracellular calcium elevation inhibited the synergistic effects in osteoclastogenesis and decreased NFAT-2 nuclear levels. On the other hand, BSP and RANKL mediated opposite effects in osteoclast survival and apoptosis. Thus, BSP increased survival and decreased apoptosis markers in differentiated RANKL-treated RAW267.5 cells and RANKL/macrophage-colony stimulating factor (M-CSF)-treated bone marrow-derived monocytes/macrophages. In addition, RAW267.5 cells treated with BSP and RANKL exhibited decreased activation of the proapoptotic Jun N-terminal kinase pathway and increased activation of anti-apoptotic AKT pathway than cells treated with RANKL or BSP alone. Taken together, our findings suggest that BSP contributes to RANKL-mediated bone resorption by inducing osteoclastogenesis and osteoclast survival and decreasing osteoclast apoptosis.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"