Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury

Bejoy Thomas, Maria Eyssen, Ronald Peeters, Guy Molenaers, Paul Van Hecke, Paul De Cock, Stefan Sunaert
Brain 2005, 128: 2562-77
Periventricular white matter injury (PWI) is a major form of brain injury observed in congenital hemiparesis. The aim of this study is to determine the usefulness of diffusion tensor imaging (DTI) and fibre tracking in delineating the primary and secondary degenerative changes in cerebral white matter and deep grey matter in patients with spastic cerebral palsy due to PWI and to look for any possible reorganization of the axonal architecture. Five hemiparetic cerebral palsy patients (median age 14 years) with known PWI were prospectively studied with DTI of the brain at 1.5T and quantitatively compared with five age and sex matched controls. Fibre tracts for various corticofugal, thalamocortical and association tracts were generated and analysed for the DTI fibre count and for diffusion parameters. A region of interest based analysis was performed for the directionally averaged mean diffusivity (D(av)) and fractional anisotropy (FA) values in various white matter locations in the brain and the brainstem and in the deep grey matter nuclei. Group statistics were performed for these parameters using Mann-Whitney U-test comparing the affected sides in patients with either side in controls and the unaffected side in hemiparetics. There was significant reduction in DTI fibre count on the lesional side involving corticospinal tract (CST), corticobulbar tract (CBT) and superior thalamic radiation in the patient group compared with controls. Also there was an increase in DTI fibre count in the unaffected side of the hemiparetic patients in CST and CBT, which reached statistical significance only in CBT. The corpus callosum, cingulum, superior longitudinal fasciculus and middle cerebellar peduncle failed to show any significant change. ROI measurements on the primary site of white matter lesion and the thalamus revealed a significant increase in D(av) and decrease in FA, suggesting primary degeneration. The CST in the brainstem, the body of corpus callosum and the head of caudate and lentiform nuclei showed features of secondary degeneration on the affected side. The CST on the unaffected side of hemiparetics was found to have a significant decrease in D(av) and an increase in FA. Thus the degeneration of various motor and sensory pathways, as well as deep grey matter structures, appears to be important in determining the pathophysiological mechanisms in patients with congenital PWI. Also evidence suggesting the reorganization of sensorimotor tracts in the unaffected side of spastic hemiparetic patients was noted.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"