Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhancing cGMP in experimental progressive renal fibrosis: soluble guanylate cyclase stimulation vs. phosphodiesterase inhibition.

cGMP serves as the main second messenger of nitric oxide (NO). Antifibrotic effects of enhancing renal cGMP levels have recently been documented in experimental acute anti-Thy-1 glomerulonephritis. The present study compares the effects of the cGMP production-increasing soluble guanylate cyclase (sGC) stimulator BAY 41-2272 with those of the cGMP degradation-limiting phosphodiesterase inhibitor pentoxifylline (PTX) in a progressive model of renal fibrosis. At 1 wk after induction of anti-Thy-1-induced chronic glomerulosclerosis (cGS), rats were randomly assigned to groups as follows: cGS, cGS + BAY 41-2272 (10 mg x kg body wt(-1) x day(-1)), or cGS + PTX (50 mg x kg body wt(-1) x day(-1)). BAY 41-2272 and PTX reduced systolic blood pressure significantly. At 16 wk, tubulointerstitial expressions of sGC mRNA and NO-induced cGMP synthesis were increased in untreated cGS animals, whereas their glomerular activity was depressed compared with normal controls. Tubulointerstitial and glomerular cGMP production in response to NO were significantly enhanced in animals treated with BAY 41-2272, but not in those treated with PTX. BAY 41-2272 administration resulted in marked reductions of glomerular and tubulointerstitial histological matrix accumulation, expression of TGF-beta1 and fibronectin, macrophage infiltration, and cell proliferation as well as improved renal function. In contrast, only moderate and nonsignificant renoprotective changes were observed in the cGS + PTX group. In conclusion, increasing renal cGMP production through BAY 41-2272 significantly improved renal NO-cGMP signaling and limited progression in anti-Thy-1-induced chronic renal fibrosis, whereas inhibition of cGMP degradation by PTX was only moderately effective. The findings indicate that pharmacological enhancement of renal cGMP levels by sGC stimulation represents a novel and effective antifibrotic approach in progressive kidney disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app