Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum.

The existence of five tetraploid species that derive from a common polyploidization event about 1 million years ago makes Gossypium (cotton) an attractive genus in which to study polyploid evolution and offers opportunities for crop improvement through introgression. To date, only crosses (HB) between the cultivated tetraploid cottons Gossypium hirsutum and G. barbadense have been genetically mapped. Genetic analysis of a cross (HT) between G. hirsutum and the Hawaiian endemic G. tomentosum is reported here. Overall, chromosomal lengths are closely correlated between the HB and HT maps, although there is generally more recombination in HT, consistent with a closer relationship between the two species. Interspecific differences in local recombination rates are observed, perhaps involving a number of possible factors. Our data corroborate cytogenetic evidence that chromosome arm translocations have not played a role in the divergence of polyploid cottons. However, one terminal inversion on chromosome (chr.) 3 does appear to differentiate G. tomentosum from G. barbadense; a few other apparent differences in marker order fall near gaps in the HT map and/or lack the suppression of recombination expected of inversions, and thus remain uncertain. Genetic analysis of a discrete trait that is characteristic of G. tomentosum, nectarilessness, mapped not to the classically reported location on chr. 12 but to the homoeologous location on chr. 26. We propose some hypotheses for further study to explore this incongruity. Preliminary quantitative trait locus (QTL) analysis of this small population, albeit with a high probability of false negatives, suggests a different genetic control of leaf morphology in HT than in HB, which also warrants further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app