Crucial roles of mesodermal cell lineages in a murine embryonic stem cell-derived in vitro liver organogenesis system

Shinichiro Ogawa, Yoh-ichi Tagawa, Akiko Kamiyoshi, Akihiro Suzuki, Jun Nakayama, Yasuhiko Hashikura, Shinichi Miyagawa
Stem Cells 2005, 23 (7): 903-13
Recent studies in the field of regenerative medicine have exploited the pluripotency of embryonic stem (ES) cells to generate a variety of cell lineages. However, the target has always been only a single lineage, which was isolated from other differentiated cell populations. In the present study, we selected sublines with a high capability for differentiation to contracting cardiomyocytes and also produced germ-line chimeric mice from a parent ES line. We also succeed in establishing embryoid bodies prepared from the ES cells that differentiated into not only hepatocytes but also at least two mesodermal lineages: cardiomyocytes that supported liver development and endothelial cells corresponding to sinusoids. This allowed the development of an in vitro system using murine ES cells that approximated the events of liver development in vivo. The expression of albumin was significantly higher in cardiomyocytes that had arisen in differentiated ES cells than in those that had not. Our in vitro system for liver organogenesis consists of a blood/sinusoid vascular-like network and hepatocyte layers and shows higher levels of hepatic function, such as albumin production and ammonia degradation, than hepatic cell lines and primary cultures of murine adult hepatocytes. This innovative system will lead to the development of second-generation regenerative medicine techniques using ES cells and is expected to be useful for the development of bioartificial liver systems and drug-metabolism assays.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"