RESEARCH SUPPORT, NON-U.S. GOV'T
Visual and haptic representations of scenes are updated with observer movement.
Scene recognition has been found to be sensitive to the orientation of the scene with respect to the stationary observer. Recent studies have shown, however, that observer movement can compensate for changes in visual scene orientation, through a process of spatial updating. Here we investigated whether spatial updating in scene recognition is affected by the encoding or learning modality by examining whether observer movement can also compensate for orientation changes in haptic scene recognition. In experiment 1, we replicated previously reported effects of observer movement on visual scene recognition. In experiment 2, we used the same apparatus as in experiment 1 but here participants were required to learn and recognize the scenes using touch alone. We found a cost in recognition performance with changes in scene orientation relative to the stationary observer. However, when participants could move around the scene to recognize the new orientation, then this cost in recognition performance disappeared. Thus, we found that spatial updating applies to recognition in both the visual and haptic modalities, both of which intrinsically encode the spatial properties of a scene.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app