JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase.

Carcinogenesis 2005 December
Chemokines have been found to alter tumor growth and metastasis. We have described previously that a particular chemokine receptor, CXCR4, was predominantly expressed on various glioma cell lines and in resected glioblastoma specimens. Herein, we have tested the ligand of CXCR4, stromal cell derived factor-1alpha (SDF-1alpha, CXCL12), on the response of human glioma cells. We found that SDF-1alpha increased the expression of membrane type-2 matrix metalloproteinase (MT2-MMP), but not the other MT-MMPs, MMP-2 or MMP-9. The SDF-1alpha enhanced MT2-MMP expression was blocked by a CXCR4 antagonist, AMD3100. Functional invasion assays showed that SDF-1alpha stimulated glioma cells to invade through matrigel-coated chambers and this effect was inhibited in glioma cells by the stable downregulation of MT2-MMP expression using small interfering RNA (siRNA). In vivo and at asymptomatic stages following intracerebral implant of cells, mice harboring MT2-MMP siRNA downregulated clones had smaller and less invasive tumors compared with mice implanted with non-specific siRNA control cells. Analyses at symptomatic stages demonstrate that mice with MT2-MMP siRNA clones survive longer than mice harboring control cells. These results highlight MT2-MMP as an effector of CXCR4 signaling in glioma cells, and they reveal the novel role of MT2-MMP in modulating tumor activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app