Journal Article
Review
Add like
Add dislike
Add to saved papers

Physiological consequences of hypohydration: exercise performance and thermoregulation.

During exercise in the heat, sweat output often exceeds water intake, which results in a body water deficit or hypohydration. This water deficit occurs from both the intracellular and extracellular fluid compartments, and causes a hypertonic-hypovolemia of the blood. Aerobic exercise tasks are likely to be adversely affected by hypohydration; and the warmer the environment the greater the potential for performance decrements. Hypohydration causes greater heat storage and reduces one's ability to tolerate heat strain. The greater heat storage is mediated by reduced sweating rate (evaporative heat loss) and reduced skin blood flow (dry heat loss) for a given core temperature. Reductions of sweating rate and skin blood flow are most tightly coupled to blood hypertonicity and hypovolemia, respectively. In addition, hypovolemia and the displacement of blood to the skin make it difficult to maintain central venous pressure and thus an adequate cardiac output to simultaneously support metabolism and thermoregulation during exercise-heat stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app