JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Single-molecule magnets: structural characterization, magnetic properties, and (19)F NMR spectroscopy of a Mn(12) family spanning three oxidation levels.

Inorganic Chemistry 2005 July 26
The syntheses, crystal structures, and magnetic properties of [Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (2), (NMe(4))[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (3), and (NMe(4))(2)[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (4) are reported. Complex 2 displays quasi-reversible redox couples when examined by cyclic voltammetry in CH(2)Cl(2): one-electron reductions are observed at 0.64 and 0.30 V vs ferrocene. The reaction of complex 2 with 1 and 2 equiv of NMe(4)I yields the one- and two-electron reduced analogues, 3 and 4, respectively. Complexes 2.3CH(2)Cl(2), 3.4.5CH(2)Cl(2).(1)/(2)H(2)O, and 4.6C(7)H(8) crystallize in the triclinic P, monoclinic P2/c, and monoclinic C2/c space groups, respectively. The molecular structures are all very similar, consisting of a central [Mn(IV)O(4)] cubane surrounded by a nonplanar alternating ring of eight Mn and eight mu(3)-O(2)(-) ions. Peripheral ligation is provided by 16 bridging C(6)F(5)CO(2)(-) and 4 H(2)O ligands. Bond valence sum calculations establish that the added electrons in 3 and 4 are localized on former Mn(III) ions giving trapped-valence Mn(IV)(4)Mn(III)(7)Mn(II) and Mn(IV)(4)Mn(III)(6)Mn(II)(2) anions, respectively. (19)F NMR spectroscopy in CD(2)Cl(2) shows retention of the solid-state structure upon dissolution and detrapping of the added electrons in 3 and 4 among the outer ring of Mn ions on the (19)F NMR time scale. DC studies on dried microcrystalline samples of 2, 3, and 4.2.5C(7)H(8) restrained in eicosane in the 1.80-10.0 K and 1-70 kG ranges were fit to give S = 10, D = -0.40 cm(-)(1), g = 1.87, D/g = 0.21 cm(-)(1) for 2, S = 19/2, D = -0.34 cm(-)(1), g = 2.04, D/g = 0.17 cm(-)(1) for 3, and S = 10, D = -0.29 cm(-)(1), g = 2.05, D/g = 0.14 cm(-)(1) for 4, where D is the axial zero-field splitting parameter. The clusters exhibit out-of-phase AC susceptibility signals (chi(M)' ') indicative of slow magnetization relaxation in the 6-8 K range for 2, 4-6 K range for 3, and 2-4 K range for 4; the shift to lower temperatures reflects the decreasing magnetic anisotropy upon successive reduction and, hence, the decreasing energy barrier to magnetization relaxation. Relaxation rate vs T data obtained from chi(M)' ' vs AC oscillation frequency studies down to 1.8 K were combined with rate vs T data from DC magnetization decay vs time measurements at lower temperatures to generate an Arrhenius plot from which the effective barrier (U(eff)) to magnetization reversal was obtained; the U(eff) values are 59 K for 2, 49 and 21 K for the slower- and faster-relaxing species of 3, respectively, and 25 K for 4. Hysteresis loops obtained from single-crystal magnetization vs DC field scans are typical of single-molecule magnets with the coercivities increasing with decreasing T and increasing field sweep rate and containing steps caused by the quantum tunneling of magnetization (QTM). The step separations gave D/g values of 0.22 cm(-)(1) for 2, 0.15 and 0.042 cm(-)(1) for the slower- and faster-relaxing species of 3, and 0.15 cm(-)(1) for 4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app