JOURNAL ARTICLE

Functional coupling of adenine nucleotide translocase and mitochondrial creatine kinase is enhanced after exercise training in lung transplant skeletal muscle

Karen Guerrero, Bernard Wuyam, Paulette Mezin, Isabelle Vivodtzev, Marko Vendelin, Jean-Christian Borel, Rachid Hacini, Olivier Chavanon, Sandrine Imbeaud, Valdur Saks, Christophe Pison
American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 2005, 289 (4): R1144-54
16020522
Mechanisms responsible for limitation of exercise capacity in lung transplant recipients (LR) and benefits gained by exercise training were studied. Mitochondrial respiration parameters, energy transfer, and cell structure were assessed in vastus lateralis biopsies using the permeabilized fiber technique with histochemical and morphometric measurements. Twelve male controls (C) and 12 LR performed exercise training over 12 wk. Before exercise training, there were strong correlations between exercise capacity (maximal O(2) consumption and endurance time at 70% maximal power output) and cellular events, as assessed by percentage of type I fibers and apparent K(m) for exogenous ADP. Anticalcineurins were not involved in LR exercise limitation, since there were no differences in maximal mitochondrial rate of respiration before exercise training and no abnormalities in respiratory chain complexes compared with C. Training resulted in a significant increase in physiological parameters both at the cellular (apparent K(m) for exogenous ADP and stimulating effect of creatine) and integrated (maximal O(2) consumption, power output at ventilatory threshold, maximal power output, and endurance time at 70% maximal power output) levels in LR and C. After the training period, improvements in maximal O(2) consumption and in maximal mitochondrial rate of respiration were noted, as well as changes in endurance time and percentage of type I fibers. Because there were no changes in diameters and fiber types, baseline alteration of apparent K(m) for exogenous ADP and its improvement after training might be related to changes within the intracellular energetic units. After the training period, intracellular energetic units exhibited a higher control of mitochondrial respiration by creatine linked to a more efficient functional coupling adenine nucleotide translocase-mitochondrial creatine kinase, resulting in better exercise performances in C and LR.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16020522
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"