ADDRESSES
COMPARATIVE STUDY
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus.

The R transactivator (Rta) protein activates Epstein-Barr virus (EBV) lytic-cycle genes by several distinct mechanisms that include direct binding to viral promoters, synergy with BamHI Z EBV replication activator (ZEBRA), and activation of cellular signaling pathways. In the direct and synergistic mechanisms of action, Rta binds to specific DNA sequences that are present in the promoters of responsive genes. It has been difficult to demonstrate the capacity of Rta expressed in mammalian cells to bind DNA in vitro in order to study the relative affinities of Rta binding elements. We discovered that a short C-terminal region of Rta inhibits the ability of Rta to bind DNA in vitro. C-terminally truncated versions of Rta bind DNA efficiently and thus facilitate a comparison of consensus Rta binding elements (CRBEs) found in promoters of five Rta-responsive genes: BMLF1, BHLF1, BMRF1, BaRF1, and BLRF2. All CRBEs in the promoters of the five genes conform to the proposed recognition sequence GNCCN9GGNG, where N is any nucleotide and N9 represents a sequence of nine nucleotides. Nonetheless, CRBEs varied markedly in their abilities to bind Rta in electrophoretic mobility shift assays. Not all CRBEs bound or responded to Rta. Binding affinities of the CRBEs and the capacity to be activated by Rta in reporter assays were strongly correlated. The CRBEs from the BMLF1 and BHLF1 promoters conferred the greatest response. The response of the BMRF1, BaRF1, and BLRF2 CRBEs was less robust. By creation of chimeras, inversions, and point mutations, differences in binding affinities and transcriptional activation levels could be attributed to N9 sequence variation. The length of N9 was also critical for a maximal response. In Raji and BZLF1-knockout cells, the mRNAs of the five Rta-responsive lytic-cycle genes differed dramatically in kinetics of expression, abundance, and synergistic responses to ZEBRA and Rta. Affinities of Rta response elements for Rta are likely to play an important role in temporal regulation and the level of lytic-cycle EBV gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app