Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dual hereditary jaundice: simultaneous occurrence of mutations causing Gilbert's and Dubin-Johnson syndrome.

BACKGROUND & AIMS: Dubin-Johnson syndrome is recessively inherited, conjugated hyperbilirubinemia induced by mutations in the ABCC2/MRP2 gene encoding the canalicular transporter for conjugated bilirubin. Gilbert's syndrome is recessively inherited, unconjugated hyperbilirubinemia caused by decreased conjugation rate of bilirubin associated mostly with homozygous A(TA) 7 TAA variant of the TATAA-box in the UGT1A1 gene promoter. Our aim was to establish the molecular diagnosis in a 3-year-old male with atypical, intermittent, predominantly unconjugated, hyperbilirubinemia.

METHODS: 99m Tc-HIDA cholescintigraphy was used for imaging the biliary tree. Expression of ABCC2/MRP2 protein in hepatocytes was investigated immunohistochemically. UGT1A1 and ABCC2/MRP2 genes were sequenced from genomic DNA, and the mutations were verified by fragment analysis, sequencing the cloned exons, and restriction fragment length polymorphism.

RESULTS: Cholescintigraphy revealed delayed visualization of the gallbladder. A brown granular lipopigment differing from melanin-like pigment reported in Dubin-Johnson syndrome was present in hepatocytes, but, otherwise, liver histology was normal. ABCC2/MRP2 protein was not detected on the canalicular membrane of hepatocytes, and 2 novel mutations were found in the ABCC2/MRP2 gene: a heterozygous in-frame insertion-deletion mutation 1256insCT/delAAACAGTGAACCTGATG in exon 10 inherited from the father and a heterozygous deletion 4292delCA in exon 30 inherited from the mother. In addition, the patient was homozygous for -3279T>G and A(TA) 7 TAA mutations in the UGT1A1 gene promoter.

CONCLUSIONS: Our patient represents a case of digenic mixed hyperbilirubinemia-a distinct type of constitutive jaundice resulting from coinherited defects in ABCC2/MRP2 and UGT1A1 genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app