Add like
Add dislike
Add to saved papers

Nonparametric estimation of ROC curves in the absence of a gold standard.

Biometrics 2005 June
In the evaluation of diagnostic accuracy of tests, a gold standard on the disease status is required. However, in many complex diseases, it is impossible or unethical to obtain such a gold standard. If an imperfect standard is used, the estimated accuracy of the tests would be biased. This type of bias is called imperfect gold standard bias. In this article we develop a nonparametric maximum likelihood method for estimating ROC curves and their areas of ordinal-scale tests in the absence of a gold standard. Our simulation study shows that the proposed estimators for the ROC curve areas have good finite-sample properties in terms of bias and mean squared error. Further simulation studies show that our nonparametric approach is comparable to the binormal parametric method, and is easier to implement. Finally, we illustrate the application of the proposed method in a real clinical study on assessing the accuracy of seven specific pathologists in detecting carcinoma in situ of the uterine cervix.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app