Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors.

The sortase enzymes are a family of Gram-positive transpeptidases responsible for anchoring surface protein virulence factors to the peptidoglycan cell wall layer. In Staphylococcus aureus, deletion of the sortase isoforms results in marked reduction in virulence and infection potential, making it an important antivirulence target. Recombinant sortase A (SrtA) and sortase B (SrtB) were incubated with peptide substrate containing either the LPETG or NPQTN motifs. (Z)-3-(2,5-dimethoxyphenyl)-2-(4-methoxyphenyl) acrylonitrile, beta-sitosterol-3-O-glucopyranoside, berberine chloride, and psammaplin A1 showed potent inhibitory activity against SrtA and SrtB. These compounds also exhibited potent inhibitory activity against S. aureus cell adhesion to fibronectin. The fibronectin-binding activity data highlight the potential of these compounds for the treatment of S. aureus infections via inhibition of sortase activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app