Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Elevated CO(2) influences herbivory-induced defense responses of Arabidopsis thaliana.

Oecologia 2005 September
We experimentally demonstrate that elevated CO(2) can modify herbivory-induced plant chemical responses in terms of both total and individual glucosinolate concentrations. Overall, herbivory by larvae of diamondback moths (Plutella xylostella) resulted in no change in glucosinolate levels of the annual plant Arabidopsis thaliana under ambient CO(2) conditions. However, herbivory induced a significant 28-62% increase in glucosinolate contents at elevated CO(2). These inducible chemical responses were both genotype-specific and dependent on the individual glucosinolate considered. Elevated CO(2) can also affect structural defenses such as trichomes and insect-glucosinolate interactions. Insect performance was significantly influenced by specific glucosinolates, although only under CO(2) enrichment. This study can have implications for the evolution of inducible defenses and coevolutionary adaptations between plants and their associated herbivores in future changing environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app