CASE REPORTS
JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

22q11.2 duplication syndrome: two new familial cases with some overlapping features with DiGeorge/velocardiofacial syndromes.

Twenty-one patients, including our two cases, with variable clinical phenotype, ranging from mild learning disability to severe congenital malformations or overlapping features with DiGeorge/velocardiofacial syndromes (DG/VCFS), have been shown to have a chromosome duplication 22q11 of the region that is deleted in patients with DG/VCFS. The reported cases have been identified primarily by interphase FISH and could have escaped identification and been missed by routine cytogenetic analysis. Here we report on two inherited cases, referred to us, to rule out 22q11 microdeletion diagnosis of VCFS. The first patient was a 2-month-old girl, who presented with cleft palate, minor dysmorphic features including short palpebral fissures, widely spaced eyes, long fingers, and hearing loss. Her affected mother had mild mental retardation and learning disabilities. The second patient was a 7(1/2)-year-old boy with velopharyngeal insufficiency and mild developmental delay. He had a left preauricular tag, bifida uvula, bilateral fifth finger clinodactyly, and bilateral cryptorchidism. His facial features appeared mildly dysmorphic with hypertelorism, large nose, and micro/retrognathia. The affected father had mild mental retardation and had similar facial features. FISH analysis of interphase cells showed three TUPLE1-probe signals with two chromosome-specific identification probes in each cell. FISH analysis did not show the duplication on the initial testing of metaphase chromosomes. On review, band q11.2 was brighter on one chromosome 22 in some metaphase spreads. The paucity of reported cases of 22q11.2 microduplication likely reflects a combination of phenotypic diversity and the difficulty of diagnosis by FISH analysis on metaphase spreads. These findings illustrate the importance of scanning interphase nuclei when performing FISH analysis for any of the genomic disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app